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We study the mechanical properties of semiflexible polymers when the contour length of the polymer is
comparable to its persistence length. We compute the exact average end-to-end distance and shape of the
polymer for different boundary conditions, and show that boundary effects can lead to significant deviations
from the well-known long-polymer results. We also consider the case of stretching a uniformly charged
biopolymer by an electric field, for which we compute the average extension and the average shape, which is
shown to be trumpetlike. Our results also apply to long biopolymers when thermal fluctuations have been
smoothed out by a large applied field or force.
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The mechanical properties of semiflexible biopolymers
are important for their biological function. For example,
DNA is tightly packed in eukaryotic chromosomes and in
viruses, while actin and microtubules provide the scaffolding
and structure for most animal cells �1�. In these cases the
length scales at which the polymer properties of these mac-
romolecules are of biological interest are comparable to their
persistence length. Namely DNA packing typically involves
loops of diameter less than its persistence length of 50 nm,
and so does looping induced by DNA bound proteins such as
the lac repressor, while actin is present in cells in the form of
bundles and networks in which the typical length of the par-
ticipating polymers is shorter than its 15 �m persistence
length. Stretching short strands of DNA is also relevant for
single molecule experiments involving tethered molecules
�2�.

Mechanical properties of semiflexible polymers are well-
described by the wormlike chain model �3,4�, which treats
the polymer as a space curve with a bending energy qua-
dratic in the curvature. On the basis of this model, the exten-
sion of a molecule in response to an applied force can be
calculated �4�, and has been shown to agree with experiments
to a high level of accuracy. Typically, the method of solution
has been to map the calculation of the partition function of
the wormlike chain to solving a differential equation, either
numerically �4�, or analytically as in the two-dimensional
case �5�. Since experiments have usually probed the force
response of long DNA molecules, theoretical treatments in
the past have typically taken the long chain limit, in which
case boundary conditions play no role. However, this is not
appropriate for molecules whose length is of the order of a
persistence length. In fact, the discrepancy between the long
chain results and the behavior of short molecules is glaringly
obvious when we look at the force extension curves them-
selves. All force extension curves for long polymers pass
through the origin in the limit as force drops to zero, but it
has been known for a long time that the short wormlike chain
has a finite extension at zero force �6�.

Since the use of short DNA strands as a “force ruler” is
becoming routine in force spectroscopy experiments, under-
standing the entropic elasticity of such strands is of consid-
erable experimental importance �2,7�. For example, using the
formula appropriate for long molecules while fitting force-
extension measurements done on short molecules leads to
incorrect estimates of the persistence length that could be 2-5
times smaller than the accepted value �7�.

It is interesting to note that similar considerations apply
even to long molecules, when the molecule in question is
being stretched by large forces, assuming that the entropic
limit is maintained and structural changes to the molecule are
not induced. For example, if a long molecule is stretched
while keeping the tangents at the two ends perpendicular to
the direction in which the force is exerted, the molecule will
bend away from the direction of the force at the ends. The
stored length in these bends will make the force-extension
behavior of this molecule different from when it is attached
with the tangents parallel to the direction of the applied
force. It has been proposed that such a mechanism is respon-
sible for the observed deviations from ideal force-extension
behavior when polymers are stretched by an atomic force
microscope �AFM� tip �8�.

The short chain and the large force limit discussed above
are both characterized by a small probability of large devia-
tions from the straight polymer configuration. Throughout
this paper we refer to this situation as the “fluctuating rod”
limit of a semiflexible polymer. In this limit we need only
take into account small, quadratic fluctuations around the
energy-minimizing configuration. This leads to a consider-
able simplification of the mathematics of the wormlike chain,
and allows for some elegant analytical results, as we demon-
strate below. Note that an alternative numerical treatment of
small-chain entropic properties is provided by accounting for
the appropriate boundary conditions and finite chain length
in the series expansion of the partition function for the
wormlike chain �7�.

Previously, short chains were explicitly discussed by Wil-
hem and Frey in �9�, who also used a harmonic approxima-
tion to obtain the probability distribution function of the end-
to-end vector for free polymers in a series expansion. An
interesting contribution was made by Keller, Swigon, and
Bustamente �10�, who discussed the difference in the appli-
cability of thermodynamics to short and long polymers, and
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derived a formula for stretching short polymers. Reference
�11�, along with Monte Carlo results, rederived this result for
stretching short polymers, and also calculated distribution
functions and the effect of walls. The effect of stored length
due to boundary conditions on long polymers stretched by
large forces was calculated by Kulic et al. �8�, who also
considered the effect of internal loops on force-extension re-
lations in this regime. In this paper we recover prior results
for stretching a short polymer by an applied force, using the
generating functional method. We find this field-theoretic
method particularly well-suited for calculating statistical
properties of fluctuating rods. To demonstrate this we derive
a number of formulas, including the hitherto unsolved prob-
lem of the average extension of a charged polymer in an
electric field.

This paper is organized as follows. In Sec. I we present
the general formalism for calculating the force-extension
curves and rms fluctuations of a fluctuating rod under ten-
sion, using the generating functional method. In Sec. II we
apply this formalism to a polymer stretched by a constant
force. However, single molecule experiments that stretch
semiflexible polymers by laser tweezers, magnetic tweezers,
or a micropipette �4� differ in the way they treat the ends of
the molecule, which may be free or constrained in several
ways �Fig. 1�. These experimental conditions affect the en-
tropy of the molecule, and thereby the force-extension rela-
tion. We demonstrate this for fluctuating rods by showing
that the effect of axis-clamping at the two ends of the mol-
ecule leads to a measurable effect on force-extension curves.

In Sec. III we show that a uniformly charged polymer in a
constant electric field behaves as if it is being stretched by a
force that varies linearly along the contour. Calculating the
force-extension relationship in this case, using the standard
method of obtaining the partition function by solving the
partial differential equation it satisfies, is not practical, since
the differential equation in this case is not separable. Previ-
ous work in this area has relied on either phenomenological
arguments �4,12�, or on linear response approximations for
weak fields �13�. However, the general method we outline in
Sec. I can easily handle this situation as well, and we present
analytical results for the force-extension relation and the
shape of a uniformly charged fluctuating-rod polymer
stretched by an electric field. The calculated average shape is
in accord with observations �12�. Our results are applicable
to stiff polymers like actin for a wide range of field strengths

and can be used to measure the effective charge density of
actin for different salt conditions.

I. STATISTICAL MECHANICS OF FLUCTUATING RODS

Since stretching experiments can be performed in both
two and three dimensions, we work in general d-dimensions.
The objective is to calculate the average extension of the
polymer in the direction of the applied force or field. We start
by making the small-fluctuation approximation, which trans-
forms the partition function of the wormlike chain into a
Gaussian path integral. Using this partition function we ob-
tain the tangent-tangent correlation function, from which we
derive the average extension of the molecule.

The Hamiltonian of a wormlike-chain polymer of contour
length L, which is stretched by a constant force F, is

�H�t�s�� = �
0

L

ds� �

2
� dt

ds
�2

− �F · t�s�	 , �1�

where �=1/kBT, s is the arclength, and � is the bending
stiffness and is simply related to the persistence length, lp
=2� / �d−1�, in d-dimensions. For double-stranded DNA �

50 nm and for an actin filament, �
15 �m. The unit tan-
gent vector t�s� specifies the conformation of the chain. The
polymer is stretched by tethering the s=0 end to a fixed
support, usually a bead held by a micropipette, and pulling
on the other end. The usual procedure is to attach either a
magnetic or a polystyrene bead to the other end of the poly-
mer, and to exert a constant force F using magnetic tweezers,
optical tweezers, or another micropipette �Fig. 1�. We assume
that F is along the e1 direction in d-dimensional space. The
components of the tangent vector are t�s�
= �±�1−
i=2

d ti�s�2 , t2�s� , . . . , td�s��. In the limit of small fluc-
tuations, the tangent vector makes only very small deviations
away from the direction of the applied force, so that its co-
ordinate along the e1 direction can be approximated as

t1�s� = 1 −
1

2

i=2

d

ti�s�2. �2�

In this limit �dt /ds�2�
i=2
d �dti /ds�2. Inserting these expres-

sions in the Hamiltonian, Eq. �1�, and integrating the bending
energy term by parts yields

�H�ti�s�� =
1

2

i=2

d ��
0

L

dsti�s�O�s�ti�s� + Bi�L,0�� , �3�

where we have left out an unimportant constant term. Here
the term Bi�L ,0��� �

2 ti�s�
dti

ds �0
L depends on the boundary con-

ditions, while

O�s� � − �
d2

ds2 + �F�s� �4�

is a differential operator. We consider the general case of an
s-dependent force, F�s�, which includes the case of stretch-
ing by an electric field discussed in Sec. III.

Magnet

E

F

F

F(a)

(b)

(c)

(d)

FIG. 1. A diagram of different ways to stretch single molecules.
�a� Magnetic tweezer apparatus. The bead is paramagnetic, and the
force exerted is proportional to the spatial gradient of the magnetic
field. �b� Stretching using a micropipette. The tip is imaged, and its
bending is precalibrated with the corresponding force exerted. �c�
Laser tweezers and �d� stretching using a uniform electric field.

HORI, PRASAD, AND KONDEV PHYSICAL REVIEW E 75, 041904 �2007�

041904-2



The boundary term Bi�L ,0� depends in general on the
tangent vectors at the two ends of the polymer, and for the
cases discussed here it vanishes. Namely, the tangent vector
at the end is either unconstrained, in which case dt /ds=0 for
the end-tangent vector, or aligned with the force, and then
ti=0 for i=2,3 , . . ..

The partition function of the fluctuating rod, Z, is a path
integral of the Boltzmann factor, exp�−�H�ti�s���, over all
possible conformations of the polymer, where H�ti�s�� is
given by Eq. �3� with the above boundary conditions. To
compute the tangent-tangent correlation function we employ
the generating functional, Z�Ji�, which is obtained by adding
a source term Ji�s� to the Hamiltonian:

Z�Ji� =� D��t�s���exp†− �H��ti�s��� + Ji�s�ti�s�‡ . �5�

The correlation function, �ti�s�ti�s��� is then obtained by tak-
ing functional derivatives �14�,

�ti�s�ti�s��� = lim
Ji→0

�2 log�Z�Ji��
�Ji�s��Ji�s��

= G�s,s�� , �6�

where G�s ,s�� is the Green’s function of the operator O�s�
defined by

O�s�G�s,s�� = �− �
d2

ds2 + �F�s��G�s,s�� = ��s − s�� . �7�

Note that, by symmetry considerations, fluctuations trans-
verse to the applied force are equivalent for all transverse
directions, hence we need to calculate this Green’s function
for only one of the d−1 directions.

To calculate the average extension in the x1-direction at
any contour position s, we now make use of the relation

�x1�s�� = �
0

s

ds��1 −
d − 1

2
�ti�s��2�� , �8�

which is valid in the small fluctuation approximation regime
given by Eq. �2�. The end-to-end extension is X= �x1�L��.
The average of each of the other d−1 orthogonal coordi-

nates, xi�i=2, . . . ,d�, is zero, while their root-mean-square
�rms� value is

�xi�s�2�1/2 = ��
0

s

ds��
0

s

ds��ti�s��ti�s����1/2

. �9�

A parametric plot of the mean extension against the root-
mean-square value of xi�s� , �i=2, . . . ,d� using Eqs. �8� and
�9� describes the average shape of the polymer.

An important question is, under what conditions does the
fluctuating rod approximation apply? For this we employ the
tangent-tangent correlation function which yields a self-
consistency condition for the small-fluctuation assumption.
In two dimensions, the small fluctuation approximation, Eq.
�2�, implies that tx�1− ty

2 /2 for all s, which is accurate to
within 1% when ty

2�1/2. In d-dimensions this suggests the
condition that the sum of all mean-squared fluctuations at
any contour position is at most 1 /2. In other words, we re-
quire that

�ti�s�2� � 1/�2d − 2� , �10�

for all s. Below we repeatedly make use of this condition in
order to estimate the range of experimental parameters �poly-
mer length, magnitude of force, etc.� for which the fluctuat-
ing rod model is applicable.

II. STRETCHING BY A CONSTANT FORCE

To illustrate the method described above, we calculate
explicitly the force-extension relation and the rms fluctua-
tions of a fluctuating rod stretched by a force applied at one
of its ends. The experimental setup is as shown in Fig. 1�a�.
The correlation function, �t�s�t�s��� is given by the Green’s
function of the differential operator, Eq. �4�. Note that the
assumption that the tangent vectors at the two ends of the
polymer are both aligned with the direction of force makes
the Green’s function vanish at the boundaries.

The differential equation is solved separately in the do-
mains s�s� and s�s�, in which the delta function vanishes,
and then the solutions are matched at the boundary s=s�.
This yields

G�s,s�� = � N sinh�	Fs�sinh�	F�L − s��� � G��s,s�� , when s � s�

N� sinh�	F�L − s��sinh�	Fs�� � G��s,s�� , when s � s�,
	 �11�

where

	F �� F

�kBT
�12�

is a force-dependent inverse length. Requiring the continuity
of G�s ,s�� at s=s�, we find N=N�. Also, by integrating both
sides of Eq. �7� over the interval s� �s−
 ,s+
� and taking

the limit �→0 gives the final boundary condition on
G�s ,s��:

� �G�

�s
�

s=s�
� −

�G�

�s
�

s=s�
= −

1

�
. �13�

Putting it all together, we get
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G�s,s�� = �
sinh�	Fs�sinh�	F�L − s���

	F� sinh�	FL�
, when s � s�

sinh�	F�L − s�sinh��	Fs��
	F� sinh�	FL�

, when s � s�.�
�14�

This Green’s function is plotted in Fig. 2.
When s=s�, the correlation function yields the mean-

square fluctuations of the tangent vector coordinate, �ti�s�2�.
Plugging this into Eq. �8�, we obtain

�x1�s��
L

=
s

L
− �d − 1�



2	Fs cosh�	FL� − sinh�	FL� + sinh�	F�L − 2s��

8	F
2�L

.

�15�

Now we set s=L in Eq. �15� to get the force extension rela-
tion for a fluctuating rod polymer,

X

L
= 1 −

d − 1

2

	FL cosh�	FL� − sinh�	FL�
2	F

2�L sinh�	FL�
. �16�

A plot of this relation, and its comparison with the long-
polymer result, is shown in Fig. 3. For d=3, Eq. �16� agrees

with the force-extension relation computed in �10�.
Experiments that involve stretching short strands of DNA,

or other semiflexible molecules, should use Eq. �16� in place
of the force-extension relation of �4�, which is appropriate in
the long chain limit �15�. As we have remarked earlier, use of
the long chain formula leads to erroneous results when fitting
data from stretching short polymers �7�. It is reassuring to
note that, as we shall show below, Eq. �16� reproduces
known results in the limits of high force and zero force.

It should be also noted that in the long-polymer limit, the
statistical properties of a semiflexible polymer under an ap-
plied force depend on one dimensionless ratio, F� / �kBT�,
which also delineates the limits of high and low force. In the
case of fluctuating rods, however, both of the two indepen-
dent dimensionless ratios that can be formed by the three
lengths, L ,�, and 	F

−1, are present in the functions describing
the statistical quantities of interest. Also, in this case the high
force limit is governed by a different dimensionless number,
	FL��FL2 /�kBT.

We can also calculate the root-mean-square fluctuations of
the polymer in the transverse directions, using Eq. �9�,

�xi�s�2�1/2

L
= �2	Fs sinh�	FL� − 3 cosh�	FL� + 4 cosh�	F�L − s�� − cosh�	F�L − 2s��

2	F
3L2� sinh�	FL� �1/2

, �17�

for the transverse directions i=2, . . . ,d. A parametric plot of
�x1�s�� given by Eq. �15� against ��xi�s�2�, i=2, . . . ,d defines
the average shape of the polymer.

The self-consistency assumption, Eq. �10�, is a necessary
condition for the validity of Eqs. �16� and �17�. It is clear
from Eq. �14� that the maximum fluctuations of the tangent
vector are at the center of the chain, s=L /2. We therefore
require that

�ti�s�2� � �t�L

2
�2� �

1

2�d − 1�
. �18�

Taking d=2 for illustration, this yields the condition that

1

2	F�
tanh�	FL

2
� �

1

2
. �19�

As the hyperbolic tangent is never greater than one, Eq. �19�
always holds when

FIG. 2. The Green’s function G�s ,s��, with 	F=1, plotted for
s� /L=0.25 �long dashes�, 0.5 �solid line�, and 0.75 �small dashes�.

0.25 0.5 0.75 1 1.25 1.5 1.75 2

0.2

0.4

0.6

0.8

F [pN]

X/L

FIG. 3. The force-extension curve for a 100 nm strand of DNA,
plotted against force in piconewtons �solid line� using Eq. �16�. The
dashed line shows the force-extension curve for a long polymer,
plotted using the approximate interpolation formula of �4�
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	F� � 1. �20�

However, even when the force is weak, Eq. �16� can apply,
provided the polymer is short enough compared to its persis-
tence length. In other words, even when 1

2	F� �1, the small
fluctuation assumption can be satisfied, provided the hyper-
bolic tangent is small enough. In this limit Eq. �19� can be
rewritten as

L

�
�

1

	F�
log�1 + 	F�

1 − 	F�
� . �21�

Conditions �20� and �21� are summarized graphically by the
shaded region in Fig. 4.

It is an interesting exercise to examine the limits of Eq.
�16� in the two cases above, described by Eqs. �20� and �21�.
When the polymer is long, so that L /��1, the strong force
condition, Eq. �20�, ensures that the product 	FL�1. Then
the force-extension curve in Eq. �16� reduces to

X

L
� 1 −

d − 1

4
�kBT

F�
, �22�

which, for d=3, is the well-known result for high force
stretching �4�. Our result in Eq. �16� shows, in fact, that even
for a short chain satisfying L /��4, as long as the force is
strong enough, such that the product 	FL�1, we recover a
force-extension relation of the form Eq. �22�.

The other limit is the case when the force is weak such
that 	FL�1, then the force extension curve in Eq. �16� be-
comes

X

L
� 1 −

d − 1

2
�1

6
�L

�
� −

F�

90kBT
�L

�
�3� . �23�

This is different from the behavior of long wormlike-chain
polymers under weak forces, in which case the force-

extension relation is proportional to the force �4�, with no
constant term. Note also that when the force goes to zero, the
relative extension of the polymer tends to 1− d−1

2
� 1

6
�� L

�
�,

which is a result one finds in Landau and Lifshitz for d=3
�6�.

What about the case when 1/ �2	F���1? Then we must
have tanh�	FL /2��	F�, or in other words, to a first approxi-
mation,

L � 2� , �24�

which can be confirmed by a look at Fig. 3. Hence polymers
up to one persistence length in two dimensions, or two per-
sistence lengths in three dimensions, can be regarded as sat-
isfying the small fluctuation approximation for any applied
force.

A. Effects of axis clamping

We now show how axis clamping affects the force exten-
sion for a fluctuating rod. If the free end of the polymer is
held rigidly, such that the end-to-end separation vector of the
polymer is constrained to be collinear with the direction of
the force, there is an additional constraint,

�
0

L

dsti�s� = 0 for i = 2,3, . . . ,d . �25�

Note that this constraint depends upon the entire conforma-
tion of the chain, hence it is not a priori clear when it can be
ignored.

We can compute the correlation function, �ti�s�ti�s���, for
all i=2,3 , . . . ,d, by forcing the constraint in Eq. �25� using
the Dirac delta function,

�ti�s�ti�s��� =

� Dti�s�ti�s�ti�s�����
0

L

dsti�s��exp��
0

L

ds�−
1

2
ti�s�O�s�ti�s�	 + �FL�

� Dti�s����
0

L

dsti�s��exp��
0

L

ds�−
1

2
ti�s�O�s�ti�s�	 + �FL� . �26�

We use the integral representation of the delta function in Fourier space, add the source terms as before, and compute the
Gaussian integrals by completing the square. This gives us an additional term in the correlation function,

�ti�s�ti�s��� = G�s,s�� −

��
0

L

ds1G�s,s1����
0

L

ds2G�s�,s2��
�

0

L

ds1�
0

L

ds2G�s1,s2�
, �27�

where G�s ,s�� is the Green’s function of the operator O�s� shown in Eq. �14�. Now using Eq. �27� in Eq. �8�, we obtain the
average extension,

X

L
= 1 −

�d − 1��	FL cosh�	FL� − sinh�	FL��
4	F

2�L sinh�	FL�
+

�d − 1��	FL cosh�	FL� − 3 sinh�	FL� + 2	FL�
2	F

3�L2 + 2	F
3�L2 cosh�	FL� − 4	F

2�L sinh�	FL�
. �28�
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The first two terms in Eq. �28� are identical to Eq. �16� de-
rived above. Therefore we find that the loss in entropy due to
axis clamping of the two ends of the polymer leads to a small
but measurable correction to the average extension. This is
plotted in Fig. 5 for d=2. We can also use Eq. �9� and cal-
culate the average shape of the polymer, defined by Eqs. �8�
and �9�, by plotting �x1�s�� against ��x2�s�2� parametrically,
as shown in Fig. 5�b�.

We calculate the range of validity of Eq. �28� by imposing
Eq. �10� as before. The parameter values that satisfy this
condition are displayed in the inset of Fig. 5. It can be shown
that when L /��6, Eq. �28� holds for all F, while for long
polymers axis clamping has no effect on the force-extension
relationship, and for 	FL�1 we again recover the well-
known result �4�, Eq. �22�.

We can expand Eq. �28� in the limit of small forces to
obtain an equation analogous to Eq. �23� for the case of axis
clamping. Interestingly, for d=3 we obtain

X

L
= 1 −

1

30
�L

�
� +

11F�

25 200kBT
�L

�
�3

. �29�

Note that as F→0, X /L approaches 1−L / �30��, while Eq.
�23� shows that without the entropic constraint, X /L ap-
proaches 1−L / �6�� in the limit of zero force. Hence we see
a different behavior at low forces due to the entropic con-
straint at the end.

An experimentally relevant situation is illustrated in Fig.
1�b�, when the polymer is stretched using a micropipette and
the force exerted is calculated by the bending of the micropi-
pette tip. An equivalent setup uses a bead attached to a glass
fiber and measures the bending of the fiber. These methods
have been used earlier, for example, to stretch chromosomes
�16� and long DNA molecules �17�. Stretching using an AFM
also involves axis clamping, though here the applicability of
our formulas depends on the other boundary condition, i.e.,
the collinearity of the first and last tangent vectors with the
force, being satisfied. In principle, the entropic effect of axis-
clamping may also be observed in stretching with a laser
tweezer since the optical bead is held in a three-dimensional
trap formed by the laser beam �Fig. 1�c��. In practice, how-

ever, the trap is not a perfect clamp. First, it is significantly
weaker in the z-direction, so some fluctuations do occur. Sec-
ond, it is very hard to control where on the surface of the
bead the polymer binds, so collinearity may be only approxi-
mately satisfied, since the bead is about three orders of mag-
nitude larger than the polymer thickness. Finally, the bead is
free to rotate in the trap, to the extent allowed by the twist
elasticity of the polymer. Experimentally the effect of axis
clamping might be relevant for stretching very short DNA
strands—a 0.1 pN force will stretch a 300 nm strand of DNA
to 0.86 of its contour length if stretched with axis-clamping,
compared to 0.81 without it. The difference might also be
observable when pulling on actin of about a persistence
length in size, but in the range of femtonewton forces.

III. FLUCTUATING ROD IN AN ELECTRIC FIELD

Next we consider stretching of a charged polymer by a
constant electric field. Here, one end of the polymer is teth-
ered, and when the field is switched on, the polymer is ob-
served to extend �12,18�. Because the polymer is in a
charged aqueous environment, the molecular mechanism of
the electrophoretic stretch is complicated �18,19�. Here we
abstract from these difficulties and assume that the polymer
responds to the field E as a uniformly charged rod with
charge per unit length �.

FIG. 4. The set of parameter values that satisfy the small fluc-
tuation approximation is shown by the shaded area. The x-axis is
the reduced force, 	F

2�2�F� /kBT. The y-axis is the polymer length
in terms of the 3d-persistence length, L /�.

FIG. 5. �a� The relative extension of a polymer X /L pulled by a
constant force in the presence of axis-clamping is plotted against
the reduced force F� / �kBT�, for a short polymer �solid line� for d
=2. The dot-dashed line is the extension without the axis-clamping
condition, Eq. �16�, while the dashed curve is the long chain result
�5�. The reduced polymer length is L /�=0.4 ��20 nm for DNA and
�6 �m for actin�. In terms of force, F� / �kBT�=1 means 0.082 pN
for DNA, and 0.27 fN for actin. Inset shows the range of allowed
parameter values �shaded area�. �b� The shape of a polymer
stretched with a laser tweezer is plotted parametrically in units of
polymer contour length L for a short polymer �L /�=0.4�. The solid
curve is for F� / �kBT�=1, and the dotted curve is for F� / �kBT�
=1000. RMS stands for root mean square.
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As in the previous section the contour length along the
polymer is denoted by s, with s=0 denoting the tethered end.
If the position vector of the segment s along the contour is
denoted by r�s�, the interaction potential of the polymer with
the field can be written as

HI�r�s�� = − �E�
0

L

ds�r�s� − r�0�� . �30�

Note that we are not only assuming that the effective charge
density is constant, but that it also remains unchanged during
the course of stretching. We can express Eq. �30� in terms of
tangent vectors,

HI�t�s�� = − �E�
0

L

ds�
0

s

ds�t�s�� . �31�

We now change the order of integration. Instead of inte-
grating first over s� from 0 to s, and then over s from 0 to L,
we can equivalently first integrate over s, from s� to L, then
integrate over s�, from 0 to L. Hence we get

HI = − �E�
0

L

ds��
s�

L

dst�s�� = − �
0

L

ds��E�L − s��t�s�� ,

�32�

Thus a constant electric field stretches on a uniformly
charged polymer as though it were subjected to a contour

dependent force, F�s��E��L−s�. This force is zero at the
free end, s=L, and reaches a maximum of �E��L at the teth-
ered end.

The s-dependent potential HI makes the application of
spectral methods to evaluating the partition function not
practical. Namely, in this case the calculation of the eigen-
functions for the spectral representation of the partition func-
tion maps to a Schrodinger-like equation with a time depen-
dent potential, making the analysis quite complicated. The
generating functional formalism, on the other hand, can be
employed without much difficulty.

The boundary conditions appropriate for this situation are

ti�0�=0, i=2,3 , . . . ,d at the tethered end, and �
dti�s�

ds �s=L=0,
for all i at the free end. The boundary term in Eq. �3� once
again vanishes. The correlation function ��i�s��i�s��� is now
the Green’s function, G�s ,s��, of the operator

O�s� � − �
d2

ds2 + ��E�L − s� , �33�

with the boundary conditions above.
The solution to Eq. �7� that satisfies the boundary condi-

tions is calculated in the same way as for the constant force
case discussed above, but now in terms of Airy functions, Ai
and Bi, and their derivatives, Ai� and Bi�,

G�s,s�� =
��Ai�	E�L − s��Bi��0� − Ai��0�Bi�	E�L − s����Ai�	E�L − s���Bi�	EL� − Ai�	EL�Bi�	E�L − s����

	E��Ai�	EL�Bi��0� − Ai��0�Bi�	EL��
. �34�

Equation �34� is the solution for s�s�, while the case s
�s� follows from symmetry.

The relevant, electric-field dependent length scale is given
by 	E

−1, where

	E = ���E/��1/3. �35�

It is interesting to note that this length scales as E−1/3, which
is different than the −1/2 power that characterizes the depen-
dence of 	F

−1 on the force. This could not have been predicted
by dimensional arguments. In fact, since E�L is a force, one
might have guessed the same scaling for 	E

−1 as for 	F
−1.

We can now calculate the relative extension of the poly-
mer in the direction of the field using Eq. �8�:

X

L
= 1 −

�d − 1��Ai��	EL�Bi��0� − Ai��0�Bi��	EL��
2	E

2�L�Ai�	EL�Bi��0� − Ai��0�Bi�	EL��
.

�36�

Equation �36� is one of the main results of this paper. It
provides an exact expression for the field-extension relation
for a charged semiflexible polymer in an electric field.

Since the quadratic Hamiltonian, Eq. �3�, implicitly as-
sumes that the fluctuations of the tangent vector are small,
we require �ti�s�2� to be small for our analysis to be self-
consistent. Once again we impose the self-consistency con-
dition, Eq. �10�, on the variance of the fluctuations, �ti�s�2�. It
is clear from the boundary conditions that the tangent vector
is fixed at the s=0 end and completely free at the s=L end
and that the maximum fluctuations of the tangent vector oc-
cur at s=L. Thus the self-consistency requirement can be
written as

�ti�L�2� =
Ai�0�Bi�	EL� − Ai�	EL�Bi�0�

�1/3�Ai�	EL�Bi��0� − Ai��0�Bi�	EL��
�

1

2�d − 1�
.

�37�

When the argument of Airy function is large, Ai converges to
0 whereas Bi diverges to +� exponentially as

Ai�z� �
exp�−

2

3
z3/2�

2��z1/4
,
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Bi�z� �
exp�2

3
z3/2�

��z1/4
. �38�

Thus when 	EL�1, the condition in Eq. �37� reduces to

�ti�L�2� � −
Ai�0�

�	EAi��0�
�

1

2�d − 1�
. �39�

Again we get a ratio of length scales, i.e., the strong field
condition is equivalent to

	E� � 2.74�d − 1� , �40�

where we have used Ai�0� /Ai��0��1.37. The small fluctua-
tion approximation therefore requires that the length scale
	E

−1 be less than about one-third of the persistence length.
On the other hand, when 	EL�1, we can Taylor expand

Ai�	EL� around 0 as Ai�	EL��Ai�0�+	EL Ai��0� and simi-
larly for Bi. Then, Eq. �37� becomes

L

�
�

1

2�d − 1�
. �41�

Thus Eq. �36� is valid for all field strengths for polymers less
than � /2 in two dimensions, and � /4 in three dimensions.
For longer polymers, stronger fields are needed for its appli-
cability. For example, Eq. �36� is applicable to a molecule of
actin that is about 15 �m in size, and is being stretched by an
electric field of at least 0.02 V/cm in strength, but it is not
useful for a molecule of DNA longer than about 25 nm; the
minimum field required for a 50 nm DNA molecule for the
small fluctuation approximation to be appropriate is of the
order of 102 V/cm. The inset of Fig. 6 shows the region of
parameter space, where in d=2 Eq. �37� holds for the whole
range of 	EL.

When the chain is long and the applied field is strong such
that E� ����2�−1, the expression of extension reduces to

X

L
= 1 −

d − 1

2
� kBT

�E�L
. �42�

It should be noted that it is possible to derive this equation
using approximate phenomenological arguments �4,12�. A
comparison with the constant force case here is very inter-
esting. As we have shown, the length scale 	F

−1 in the con-
stant force case scales as F−1/2 in contrast with 	E

−1 that scales
as E−1/3. In the high field limit, however, the dependence of
the relative extension on the electric field becomes E−1/2, just
as the dependence of extension on force in the high force
limit.

In the other limit, when the polymer is short so that L /�
�1/ �2d−2�, and the electric field is small, E� ����2�−1, Eq.
�36� yields the limiting linear response,

X

L
= 1 −

d − 1

4
�L

�
� +

�d − 1��E�2

40kBT
�L

�
�4

. �43�

Equation �43� has been derived for d=3 using different
methods in �13�.

Again we can compute the average shape, defined as be-
fore by Eqs. �8� and �9�, of the polymer under stretch. In

experiments on long DNA molecules, it has been reported
that the polymer assumes a trumpetlike shape, reflecting the
fact that force is stronger towards the grafted end and tends
to vanish at the free end �12�. The integral in Eq. �8� can be
calculated analytically, while Eq. �9� needs to be calculated
numerically. A trumpetlike shape emerges naturally as the
result of our computation, and is shown in Fig. 6.

In experiments that stretch single molecules by electric
fields, the polymer molecule is in an ionic solution, and an
electric field will drive a net current �4�. The current creates
a flow in the system, and the net deformation of the mol-
ecule, it has been argued, is therefore a combination of the
flow and the field �4,18,19�. In experiments performed with
long DNA molecules of different lengths, it has been shown
that Eq. �42� fits the data only with different effective charge
densities for different lengths of the molecule, thus question-
ing whether the effective charge density is a physically
meaningful parameter �18�. However, we feel that interpre-
tation of the results has been hampered by the lack of precise
formulas for the electric field induced stretching case. While
this continues to be the case for long DNA molecules, Eq.
�36� provides a means of testing these questions using actin
molecules. Quantitative comparison of our results with ex-
periments would be relatively easy for actin polymers, since
the required electric fields for the fluctuating-rod assump-
tions to hold are small, and easily produced in the laboratory.
Assuming that charge screening reduces bare actin charge to
about 1 electrons/nm, our results are valid for all actin

FIG. 6. �a� Relative extension X /L is plotted against the reduced
electric field ��E�2 for a polymer of size L /�=0.4 for d=2. Inset
shows parameter values allowed by self-consistency �shaded area�.
For actin, if ��1e /nm, ��E�2=1 is about 10−3 V/cm, for DNA
with 0.6e /nm it is about 170 V/cm. Note that we are assuming that
the screened charge density is about one-tenth of the bare charge
density. This is consistent with experiments on DNA �12�. �b� The
shape of a short polymer stretched by a constant electric field in two
dimensions is plotted parametrically in units of polymer contour
length L /�=0.4. The solid curve is for ��E�2=1, and the dotted
curve is for ��E�2=1000.
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lengths at electric field strengths starting from 0.03 V/cm
upwards. From force-extension measurements in such ex-
periments, the effective charge density of actin of different
lengths and under different ionic conditions can be extracted.

In view of the nonuniform nature of the effective force a
charged polymer experiences in a constant electric field, it
may be useful to ask what is the effective constant force,
which would lead to the same relative extension as a given
electric field strength. Equation �42� appears to suggest that
at high forces the polymer behaves as if it is being stretched
by a constant force equivalent to that produced by one-fourth
of the total charge concentrated at the end of the chain. It
turns out that over most of the regime of applicability of our
result, that is a reasonable approximation, as demonstrated in
Fig. 7.

IV. CONCLUSIONS

Biopolymers like DNA are fast emerging as tools—rulers
and templates—for a number of biophysical applications,
such as measuring DNA-protein interactions. Some of these
uses are due to the remarkable fact that a simple physical
model, the wormlike chain, explains DNA entropic elasticity
with great accuracy, and small deviations from this behavior,
say due to bound proteins, can be detected. However, en-
tropic effects are subtle and may be affected by experimental
conditions in ways that are not obvious. For example, it was
recently pointed out that tethered bead experiments, that use
a short DNA strand attached to a bead, need to take into
account entropic exclusion forces of the bead with the wall

�20�. Similarly, experiments involving entropic elasticity
need to account for the influence of experimental conditions
on the entropy of the molecule that may quantitatively
change the force-extension relation.

In this paper we have theoretically examined entropic ef-
fects of boundary conditions on force-extension curves. We
demonstrated that the force-extension response of fluctuating
rods is qualitatively different from that of long polymers, for
which the contour length is much greater than its persistence
length. We also derived analytic expressions for the force-
extension relation and root-mean-square fluctuations of such
a polymer stretched by a constant force. Finally, we showed
that in the fluctuating rod limit the constraint of axis-
clamping, which might be imposed by single-molecule
stretching techniques such as laser tweezers, can lead to a
measurable effect on force-extension curves. More impor-
tantly, blindly employing the long-polymer formulas to data
obtained for short chains might lead to erroneous conclu-
sions �7�.

Single molecule experiments using electric fields to
stretch molecules may also become a useful tool, but
progress is hampered by the lack of analytic expressions for
the force-extension curves in this case. We examine the case
of a polymer stretched by an electric field, and show that it
behaves as if it is being stretched by a nonuniform force,
which increases linearly from the free end of the chain. We
derive an analytic expression for the field-extension relation
and average shape of the polymer stretched by an electric
field, in the fluctuating rod limit.

In all cases considered here, the force extension formulas,
Eqs. �28� and �36�, are functions of three length scales, two
of which are the contour length L and the 3d-persistence
length �. For stretching by a constant force, the third length
scale is 	F

−1��kBT� /F, while for a constant electric field it is
	E

−1��kBT� /E��1/3. It is noteworthy that these length scales
do not follow from dimensional arguments alone due to the
presence of dimensionless combinations of polymer param-
eters. Since these length scales are related to the decay of
fluctuations in the directions transverse to the force, and be-
come smaller as the polymer becomes more straight, they
may be interpreted as confinement length scales, pointing
towards deeper analogies between stretched and confined
polymers �21,22� that warrant further exploration.
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